

Tecnologie energetiche per l'efficientamento e la gestione ottimizzata di reti e microreti energetiche

Napoli, 29/03/2019

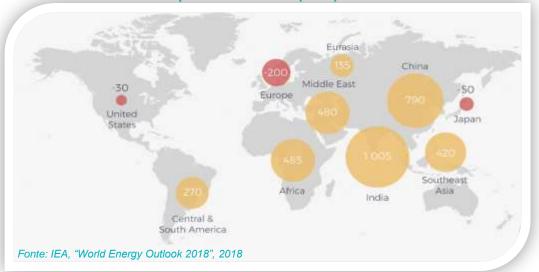
Marialaura Di Somma, Giorgio Graditi ENEA – Dipartimento Tecnologie Energetiche | Divisione Solare Termico, Termodinamico e Smart Network | Laboratorio Smart Grid e Reti Energetiche

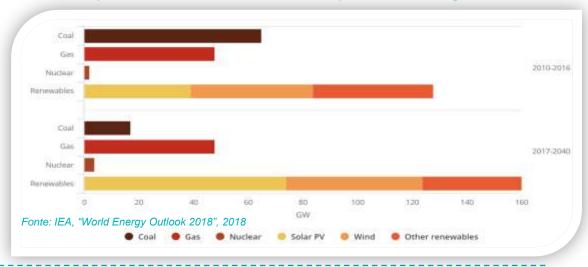
Agenda

- Scenario energetico di riferimento
- Reti energetiche a servizio di distretti
- Tecnologie adottabili nell'ambito delle reti energetiche: sistemi di conversione primaria e sistemi di accumulo
- Pianificazione di una rete energetica

Scenario energetico di riferimento

La consapevolezza, ormai diffusa a livello globale, che gli investimenti sull'efficienza energetica per i sistemi di approvvigionamento energetico rappresentano una vera e propria necessità energetica e un'importante opportunità di crescita e di sviluppo economico, ha fatto da traino, negli ultimi anni, alla definizione di *policy* volte ad un uso razionale ed efficiente delle fonti energetiche.

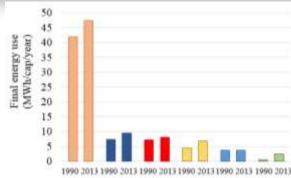



Scenario energetico di riferimento

- La domanda globale di energia primaria è destinata a crescere in modo significativo nel corso dei prossimi decenni, soprattutto con riferimento alle economie emergenti.
- Nonostante l'uso delle fonti rinnovabili sia destinato ad aumentare per soddisfare la domanda crescente di energia a livello mondiale, i combustibili fossili continueranno ad avere un ruolo significativo nei futuri sistemi di approvvigionamento energetico.

Variazione della domanda di energia primaria globale prevista nel periodo 2016-2040 (Mtoe)

Capacità nette annuali medie addizionali per fonte a livello globale



Domanda energetica globale annua pro-capite per usi finali nel settore edilizio nel 1990 e nel 2013 per varie regioni nel mondo.

Scenario energetico di riferimento

edilizio settore risulta responsabile di oltre un terzo domanda della energetica globale. Inoltre, risulta del 15% responsabile delle emissioni totali di CO2 legate al consumo diretto di energia da parte degli utenti finali, e, se si tiene anche conto delle emissioni indirette imputabili alla domanda elettrica termica. tale е percentuale arriva al 26%.

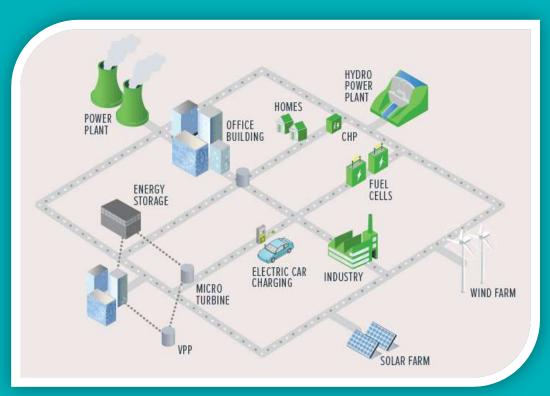
Scenario energetico di riferimento

- Oltre all'importanza di ridurre i consumi energetici dal lato "domanda", è altresì cruciale il risparmio energetico nei sistemi di approvvigionamento energetico, attraverso una politica basata sull'uso razionale ed efficiente delle fonti energetiche.
- Con specifico riferimento al contesto Europeo, l'Unione Europea (UE) si pone da tempo tra i leader mondiali nella promozione e nello sviluppo di politiche di efficientamento per i sistemi di approvvigionamento energetico.

 A supporto di questa strategia, nel Novembre del 2016, mediante la definizione del Clean Energy Package, l'Europa ha avviato il percorso di costruzione di un'Unione dell'Energia, che possa consentire a tutti i cittadini dell'UE di poter usufruire di energia sicura, sostenibile e a prezzi competitivi.

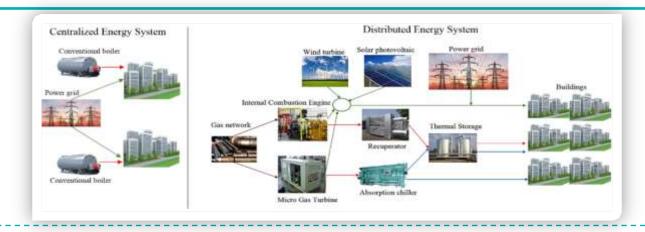
Agenda

- Scenario energetico di riferimento
- Reti energetiche a servizio di distretti
- Tecnologie adottabili nell'ambito delle reti energetiche: sistemi di conversione primaria e sistemi di accumulo
- Pianificazione di una rete energetica



Reti energetiche a servizio di distretti

In piena coerenza con questa *roadmap* strategica, si è intensificato, negli ultimi anni, l'interesse verso le reti e microreti energetiche a servizio di distretti, che sono state riconosciute come un'alternativa sostenibile ai sistemi di approvvigionamento convenzionali e come una valida opzione per lo sviluppo sostenibile dell'approvvigionamento energetico futuro.



Reti energetiche a servizio di distretti

Una rete energetica è un sistema energetico integrato di risorse energetiche (elettriche e termiche) distribuite all'interno di un'area geografica ben definita e caratterizzata da collegamenti elettrici fisici tra le varie unità e da un unico punto di connessione con la rete di distribuzione esterna. Dal punto di vista della rete, essa è vista come un unico sistema i cui output, ovvero l'energia elettrica e termica, sono resi disponibili in prossimità dell'utente finale, tipicamente caratterizzato da un cluster di edifici. Pur operando prevalentemente connessa con la rete di distribuzione, essa è anche in grado di essere configurata per il funzionamento in isola.

Reti energetiche a servizio di distretti

Rete Energetica

Vantaggi

- Sfruttamento di risorse locali
- Integrazione di fonti rinnovabili
- Impatto ambientale ridotto
- Mix energetico diversificato
- Uso più efficiente delle risorse (mediante co- e trigenerazione).

Svantaggi

Processo di pianificazione complesso.

Sistema di approvvigionamento convenzionale (generazione separata di energia elettrica e termica

Vantaggi

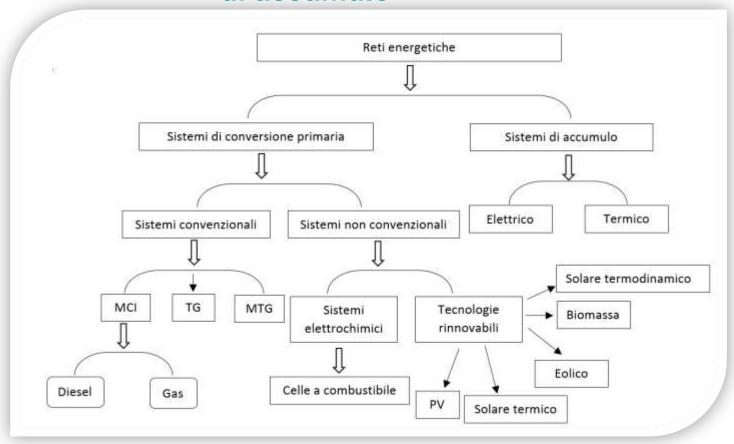
Assenza di pianificazione.

Svantaggi

- Maggiore impatto ambientale
- Difficoltà di integrazione delle rinnovabili
- Maggiore spreco di fonti fossili (generazione separata di energia elettrica e termica).

Agenda

- Scenario energetico di riferimento
- Reti energetiche a servizio di distretti
- Tecnologie adottabili nell'ambito delle reti energetiche: sistemi di conversione primaria e sistemi di accumulo
- Pianificazione di una rete energetica

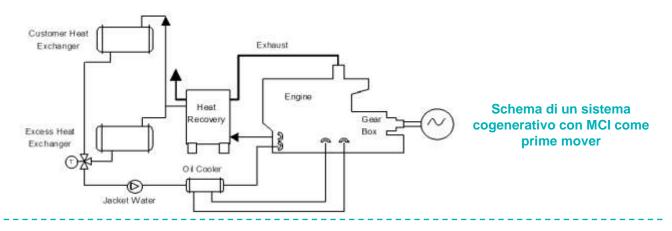


Sistemi di conversione primaria e sistemi di accumulo

Motori a combustione interna

I motori a combustione interna (MCI) alimentati da combustibili fossili, quali Diesel e gas naturale sono tra le tecnologie maggiormente utilizzate nell'ambito delle reti energetiche, soprattutto in applicazioni di co-trigenerazione per produzione combinata di energia elettrica e termica.

Tecnologia	Range di	Efficienza elettrica	Efficienza termica (in	Combustibile	Applicazione
	applicazione		assetto cogenerativo)		nell'ambito delle reti
Motori a combustione	Diesel: 20 kW _e - 10	Diesel: 36-43%	Diesel: 32-55%	Diesel e biodiesel	Applicazioni in ambito
interna (MCI)	MW _e	Gas: 28–42%	Gas: 40-68%	Gas, soprattutto gas	residenziale,
	Gas: 5 kW _e – 5MW _e			naturale, ma anche	commerciale e
				biogas sono utilizzati	industriale per:
					Solo fornitura
					energia elettrica
					 Co/trigenerazione



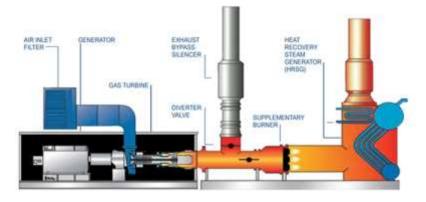
Motori a combustione interna

Caratteristica dei MCI	Descrizione
Output termico in applicazioni di	Sono in grado di produrre acqua calda, vapore a bassa pressione e acqua fredda attraverso l'uso di un
co/trigenerazione	assorbitore.
Velocità della fase di avviamento	Sono caratterizzati da un avviamento veloce che consente una rapida ripresa del sistema. Tali sistemi
	sono in grado di offrire una risposta tempestiva in caso di picco di richiesta di energia elettrica.
Funzionamento a carico parziale	Sono caratterizzati da un'elevata efficienza a carico parziale.
Affidabilità	Sono considerati una tecnologia affidabile sulla base di una corretta manutenzione.
Emissioni	I MCI alimentati a Diesel sono caratterizzati da elevate emissioni di NOx e particolato. Quelli alimentati a
	gas sono caratterizzati da livelli di emissioni nettamente inferiori.

Turbine a gas

Le turbine a gas (TG) sono impianti motori termici che convertono l'energia chimica del combustibile in energia meccanica mediante un ciclo termodinamico Brayton. Queste tecnologie sono spesso utilizzate in grandi applicazioni industriali e il range di taglie disponibili sul mercato va dai 500 kW ai 20 MW. Esse possono essere impiegate in diverse applicazioni che vanno dalla sola generazione elettrica alla produzione combinata di energia elettrica e termica in ambito industriale.

Tecnologia	Range di	Efficienza elettrica	Efficienza termica (in	Combustibile	Applicazione
	applicazione		assetto cogenerativo)		nell'ambito delle reti
Turbine a gas (TG)	$500 \text{ kW}_{\text{e}} - 20 \text{ MW}_{\text{e}}$	21–40%	33-42%	Gas, cherosene	Applicazioni in ambito
					industriale per:
					Solo fornitura
					energia elettrica
					 Co/trigenerazione



Turbine a gas

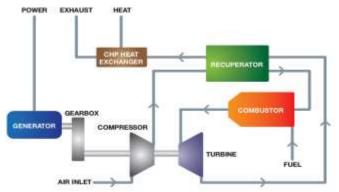
Caratteristica delle TG	Descrizione
Output termico in applicazioni di	Rendono disponibile calore ad elevata temperatura. Il vapore ad elevata pressione può essere sia
co/trigenerazione	utilizzato per processi di riscaldamento o essiccazione in ambito industriale, che per produrre acqua fredda
	attraverso l'uso di un assorbitore.
Diversità dei combustibili di	Possono essere alimentate da diversi combustibili, come gas naturale, syngas e oli combustibili.
alimentazione	
Funzionamento a carico parziale	Sono caratterizzate da una riduzione notevole dell'efficienza a carico parziale.
Affidabilità	Le TG moderne sono da considerare una tecnologia affidabile sulla base di una corretta manutenzione.
Emissioni	Le TG (soprattutto quelle alimentate da gas naturale) sono caratterizzate da basse emissioni di NOx e
	monossido di carbonio.

Configurazione di una TG in assetto cogenerativo

Microturbine a gas

Le microturbine a gas (MGT) sono impianti motori termici simili alle turbine a gas che convertono l'energia chimica del combustibile in energia meccanica mediante un ciclo termodinamico Brayton. Tale tecnologia, insieme ai motori a combustione interna, rappresenta una delle soluzioni maggiormente adottate nell'ambito delle reti energetiche.

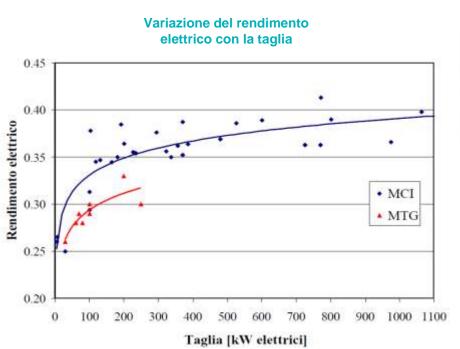
Tecnologia	Range di	Efficienza elettrica	Efficienza termica (in	Combustibile	Applicazione
	applicazione		assetto cogenerativo)		nell'ambito delle reti
Microturbine a gas	$30 - 300 \text{ kW}_{e}$	26–32%	44–52%	Generalmente gas	Applicazioni in
(MTG)				naturale, ma anche	ambito residenziale
				biogas o combustibili	e commerciale per:
				liquidi possono	Solo fornitura
				essere utilizzati	energia elettrica
					 Co/trigenerazione

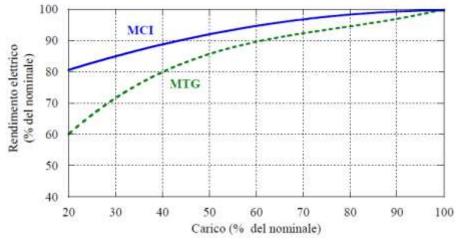


Microturbine a gas

Caratteristica delle MTG	Descrizione		
Output termico in applicazioni di	Rendono disponibili gas esausti che vanno dai 260 ai 320°C, adatti per produrre acqua calda e vapore,		
co/trigenerazione	nonché acqua fredda attraverso l'uso di un assorbitore.		
Diversità dei combustibili di	Possono essere alimentate da diverse tipologie di combustibili, come gas naturale, biogas, e combustibili		
alimentazione	liquidi.		
Funzionamento a carico parziale	Sono caratterizzate da una riduzione notevole dell'efficienza a carico parziale.		
Modularità	Possono essere connesse in parallelo per coprire carichi elevati.		
Dimensioni	Sono caratterizzate da un basso peso.		
Affidabilità	Sono da considerare una tecnologia affidabile sulla base di una corretta manutenzione.		
Emissioni	Le MTG (soprattutto quelle alimentate da gas naturale) sono caratterizzate da basse emissioni di NOx e		
	monossido di carbonio.		

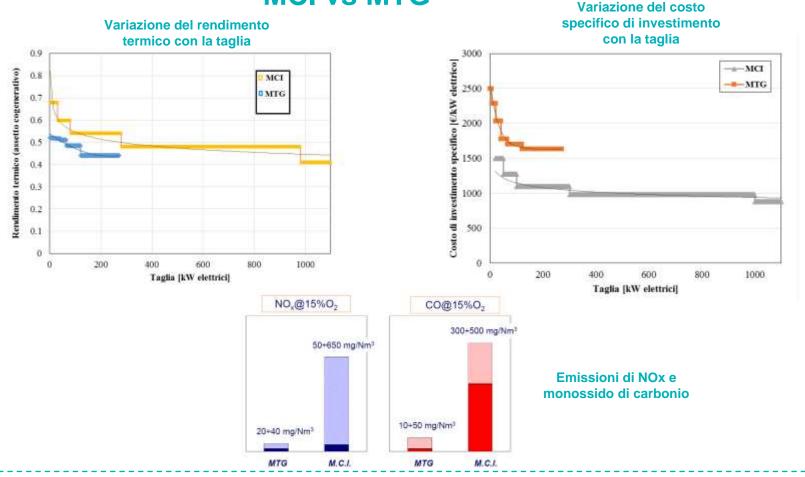
Configurazione di una MTG in assetto cogenerativo





MCI vs MTG

Variazione del rendimento elettrico con il carico



MCI vs MTG

Celle a combustibile

Le celle a combustibile sono fra i sistemi più promettenti per la produzione di energia elettrica, sia per le loro caratteristiche positive in ambito energetico ed ambientale, che per la varietà delle possibili applicazioni. Tale tecnologia trova, infatti, impiego in settori che vanno dalla generazione distribuita, alla cogenerazione residenziale e industriale, alla generazione portatile e alla trazione.

1	Tecnologia	Range di	Efficienza elettrica	Efficienza termica (in	Combustibile	Applicazione
		applicazione		assetto cogenerativo)		nell'ambito delle reti
	Celle a combustibile	PAFC: 200 kW _e -2	PAFC: 35%	PAFC: ~ 46%	Idrogeno/ metanolo,	Applicazioni per:
		MW _e	MCFC: 50-55%	MCFC: 27-32%	gas naturale	Solo fornitura
		MCFC: 50kW _e -	SOFC: 50-55%	SOFC: 19-24%		energia elettrica
		1+MW _e				 Co/trigenerazione
		SOFC: 1 kW _e –5MW _e				

Celle a combustibile

Caratteristica delle Celle a combustibile	Descrizione
Output termico in applicazioni d	Possono raggiungere efficienze totali che vanno dal 65% al 95%. Il calore recuperato può essere
co/trigenerazione	generalmente utilizzato per produrre acqua calda sanitaria e per riscaldamento ambiente, o per raffrescamento
	ambiente mediante l'utilizzo di un assorbitore.
Diversità dei combustibili d	Possibilità di utilizzo di una ampia gamma di combustibili come metano, metanolo, gas naturale, gas di sintesi
alimentazione	(prodotto da combustibili liquidi, gassificazione del carbone, biomasse).
Funzionamento a carico parziale	L'efficienza delle celle è poco sensibile alle variazioni del carico elettrico, diversamente da quanto si verifica
	con gli impianti convenzionali. Una cella è, infatti, in grado di operare tra il 30% e il 100% di carico, senza
	perdite consistenti di efficienza.
Funzionamento ciclico	Le MCFC e SOFC necessitano di lunghi periodi di riscaldamento e raffreddamento, che limitano la loro
	capacità di operare in applicazioni cicliche.
Efficienza elettrica	Sono caratterizzate da efficienze elettriche elevate, con valori che vanno dal 40-48% (riferito al potere
	calorifico inferiore del combustibile) per gli impianti con celle a bassa temperatura, fino a raggiungere oltre il
	60% per quelli con celle ad alta temperatura utilizzate in cicli combinati.
Utilizzo del combustibile	La risorsa primaria è l'idrogeno, che può essere ottenuto da gas naturale, metanolo e altri combustibili
	contenenti idrocarburi.
Emissioni	Nelle celle a combustibile, la combustione può raggiungere emissioni di monossido di carbonio inferiori a 2
	ppmv, di NOx inferiori a 1 ppmv, e emissioni trascurabili di SOx. Tuttavia, la maggior parte delle celle a
	combustibile converte metano in idrogeno. Questo processo genera emissioni di CO ₂ .

Tecnologie alimentate da fonti rinnovabili

Tecnologia	Range di applicazione		Efficienza termica (in assetto cogenerativo)	Combustibile	Applicazione nell'ambito delle reti
Fotovoltaico	1 + kW _e	~12-15%		Energia solare	Prevalentemente applicazioni in ambito residenziale e commerciale
Eolico	1+kW _e –3 MW _e	~20-25%		Energia cinetica del vento	Prevalentemente applicazioni in ambito residenziale e commerciale
Solare termico	1+ kW _t	_	~60%	Energia solare	Prevalentemente applicazioni in ambito residenziale e commerciale

Tecnologie alimentate da fonti rinnovabili

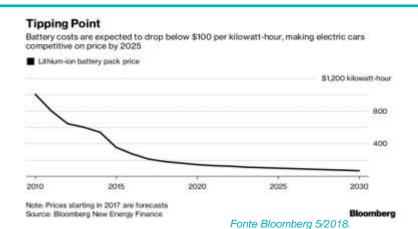
Tecnologia	Range di applicazione	Efficienza elettrica	Efficienza termica (in	Combustibile	Applicazione
			assetto cogenerativo)		nell'ambito delle reti
Solare termodinamico	Parabolic Trough: 10-	Parabolic Trough: 11 -		Energia solare	Prevalentemente per la
	300 MW _e	16%			fornitura energia
	Solar Power Tower: 10-	Solar Power Tower: 7-			elettrica. Possono fornire
	200 MW _e	20%			energia termica a
	Linear Fresnel: 10-200	Linear Fresnel: 12-13%			diversa temperatura, e
	MW _e	Parabolic Dish: 12-25%			calore di processo per
	Parabolic Dish: 10 - 25				applicazioni
	kW _e				prevalentemente
					industriali.
Boiler a biomassa	$10 \text{ kW}_{t} - 2 \text{ MW}_{t}$	-	~85%	Biomasse	Prevalentemente
					applicazioni in ambito
					residenziale e
					commerciale
Turbogeneratori	$200 \text{ kW}_{\text{e}} - 2 \text{ MW}_{\text{e}}$	~18%	~80%	Biomasse	Cogenerazione
Organic Ranking Cycle					
(ORC)					

Sistemi di accumulo dell'energia

L'integrazione dei sistemi di accumulo dell'energia consente ai sistemi di generazione, di operare a capacità prossime a quelle nominali, indipendentemente dalla richiesta energetica istantanea dell'utente, e che l'energia convertita in eccesso durante le ore di base della richiesta sia accumulata ed utilizzata successivamente nelle ore di picco.

L'integrazione dei sistemi di accumulo dell'energia nell'ambito delle reti energetiche a servizio di distretti offre numerosi vantaggi, quali:

- Possibilità di produrre energia in un periodo di scarsa domanda, accumularla e poi renderla disponibile quando la richiesta è maggiore.
- Riduzione nell'uso di combustibili fossili, con conseguente riduzione dei costi dei vettori energetici da sostenere e dell'impatto ambientale.
- Possibilità di spostare l'acquisto di energia elettrica nelle fasce orarie in cui costa di meno.
- Maggiore flessibilità del sistema.



Sistemi di accumulo elettrico

Gli accumulatori elettrochimici sono attualmente oggetto di un'intensa attività di ricerca e sviluppo e se ne prevede una crescente penetrazione, soprattutto nell'ambito delle applicazioni distribuite in prossimità dell'utenza, di piccola e media taglia (tra 1 MW e qualche decina di MW). Le tecnologie più promettenti appaiono essere quelle basate su ioni di litio. In ambito europeo, la tecnologia elettrochimica delle batterie è quella caratterizzata da una maggiore dinamica di crescita e sviluppo.

Proiezioni al 2030 del CAPEX dei sistemi di accumulo elettrochimico con tecnologia agli ioni di Litio

Sistemi di accumulo termico

I sistemi di accumulo dell'energia termica, permettendo di sopperire al mancato sincronismo tra domanda e produzione di energia termica, favoriscono l'aumento dell'efficienza dei sistemi a cui sono abbinati, l'abbattimento dei costi, e la riduzione delle emissioni inquinanti.

I sistemi di accumulo termico possono essere classificati come:

- Sistemi di accumulo a calore sensibile
- Sistemi di accumulo a calore latente mediante materiali a cambiamento di fase (PCM- phase change materials).
- Sistemi di accumulo termo-chimico (TCS Thermo-Chemical Storage)

Gli impianti di accumulo a calore sensibile, prettamente ad acqua, rappresentano la soluzione maggiormente utilizzata nell'ambito di reti energetiche. Il maggiore vantaggio è legato ai bassi costi di tali sistemi.

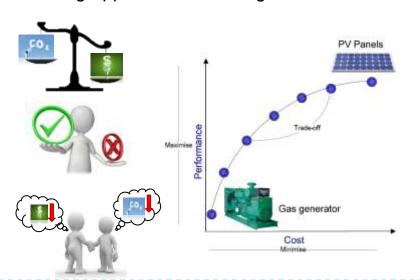
Agenda

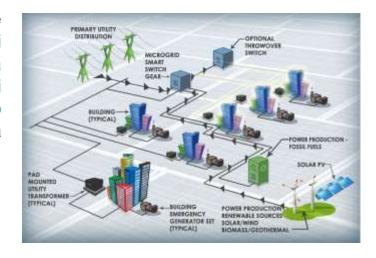
- Scenario energetico di riferimento
- Reti energetiche a servizio di distretti
- Tecnologie adottabili nell'ambito delle reti energetiche: sistemi di conversione primaria e sistemi di accumulo
- Pianificazione di una rete energetica

Pianificazione di una rete energetica

Per poter ottenere i potenziali attesi di una rete energetica, è necessario pianificarla in maniera opportuna, definendo, tra le numerose alternative offerte dal mercato, sia il mix ottimale di tecnologie in termini di tipologie, numeri e taglie, sia le loro strategie di funzionamento, per soddisfare il fabbisogno energetico di un'utenza o un gruppo di utenze.

La pianificazione di una rete energetica è intesa come quel processo decisionale volto ad ottimizzare il suo design, ovvero la sua configurazione, selezionando il mix appropriato di tecnologie in termini di tipologie, numeri e taglie, al fine di conseguire uno o più obiettivi, come ad esempio quello economico e/o quello ambientale, o quel processo decisionale volto ad ottimizzare il funzionamento dei componenti della rete, sempre al fine di conseguire uno o più obiettivi.





Pianificazione di una rete energetica:

Un processo decisionale complesso

 La complessità di tale processo decisionale è legata alla presenza di molteplici sistemi di conversione e sistemi di accumulo dell'energia che convertono e accumulano una serie di vettori energetici con interazioni tra loro complesse, per soddisfare i carichi di un'utenza o gruppo di utenze in regime dinamico.

La complessità è anche legata alla presenza di diversi stakeholder interessati allo sviluppo e conseguente diffusione di questo nuovo paradigma energetico, che definisce la necessità di adottare un approccio multi-obiettivo.

Marialaura Di Somma, Giorgio Graditi ENEA

Dipartimento Tecnologie Energetiche

marialaura.disomma@enea.it giorgio.graditi@enea.it

Per maggiori dettagli, il Technology Brief è scaricabile al sito www.espa.enea.it

